pytorch-quickstart
# QUICKSTART
This section runs through the API for common tasks in machine learning. Refer to the links in each section to dive deeper.
# Working with data
PyTorch has two primitives to work with data (opens new window): torch.utils.data.DataLoader
and torch.utils.data.Dataset
. Dataset
stores the samples and their corresponding labels, and DataLoader
wraps an iterable around the Dataset
.
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
2
3
4
5
PyTorch offers domain-specific libraries such as TorchText (opens new window), TorchVision (opens new window), and TorchAudio (opens new window), all of which include datasets. For this tutorial, we will be using a TorchVision dataset.
The torchvision.datasets
module contains Dataset
objects for many real-world vision data like CIFAR, COCO (full list here (opens new window)). In this tutorial, we use the FashionMNIST dataset. Every TorchVision Dataset
includes two arguments: transform
and target_transform
to modify the samples and labels respectively.
# Download training data from open datasets.
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
)
# Download test data from open datasets.
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor(),
)
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Out:
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to data/FashionMNIST/raw/train-images-idx3-ubyte.gz
Extracting data/FashionMNIST/raw/train-images-idx3-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw/train-labels-idx1-ubyte.gz
Extracting data/FashionMNIST/raw/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz
Extracting data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz
Extracting data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw
2
3
4
5
6
7
8
9
10
11
12
13
14
15
We pass the Dataset
as an argument to DataLoader
. This wraps an iterable over our dataset, and supports automatic batching, sampling, shuffling and multiprocess data loading. Here we define a batch size of 64, i.e. each element in the dataloader iterable will return a batch of 64 features and labels.
batch_size = 64
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
print(f"Shape of X [N, C, H, W]: {X.shape}")
print(f"Shape of y: {y.shape} {y.dtype}")
break
2
3
4
5
6
7
8
9
10
Out:
Shape of X [N, C, H, W]: torch.Size([64, 1, 28, 28])
Shape of y: torch.Size([64]) torch.int64
2
Read more about loading data in PyTorch (opens new window).
# Creating Models
To define a neural network in PyTorch, we create a class that inherits from nn.Module (opens new window). We define the layers of the network in the __init__
function and specify how data will pass through the network in the forward
function. To accelerate operations in the neural network, we move it to the GPU if available.
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
print(model)
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Out:
Using cuda device
NeuralNetwork(
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear_relu_stack): Sequential(
(0): Linear(in_features=784, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=10, bias=True)
)
)
2
3
4
5
6
7
8
9
10
11
Read more about building neural networks in PyTorch (opens new window).
# Optimizing the Model Parameters
To train a model, we need a loss function (opens new window) and an optimizer (opens new window).
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
2
In a single training loop, the model makes predictions on the training dataset (fed to it in batches), and backpropagates the prediction error to adjust the model’s parameters.
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
We also check the model’s performance against the test dataset to ensure it is learning.
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
2
3
4
5
6
7
8
9
10
11
12
13
14
The training process is conducted over several iterations (epochs). During each epoch, the model learns parameters to make better predictions. We print the model’s accuracy and loss at each epoch; we’d like to see the accuracy increase and the loss decrease with every epoch.
epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
print("Done!")
2
3
4
5
6
Out:
Epoch 1
-------------------------------
loss: 2.302418 [ 0/60000]
loss: 2.292112 [ 6400/60000]
loss: 2.263742 [12800/60000]
loss: 2.261939 [19200/60000]
loss: 2.246309 [25600/60000]
loss: 2.211567 [32000/60000]
loss: 2.222588 [38400/60000]
loss: 2.184552 [44800/60000]
loss: 2.181921 [51200/60000]
loss: 2.149043 [57600/60000]
Test Error:
Accuracy: 39.3%, Avg loss: 2.141805
Epoch 2
-------------------------------
loss: 2.158010 [ 0/60000]
loss: 2.149895 [ 6400/60000]
loss: 2.079702 [12800/60000]
loss: 2.100497 [19200/60000]
loss: 2.038944 [25600/60000]
loss: 1.982337 [32000/60000]
loss: 2.017102 [38400/60000]
loss: 1.928107 [44800/60000]
loss: 1.938422 [51200/60000]
loss: 1.860414 [57600/60000]
Test Error:
Accuracy: 52.8%, Avg loss: 1.856996
Epoch 3
-------------------------------
loss: 1.900860 [ 0/60000]
loss: 1.867335 [ 6400/60000]
loss: 1.738796 [12800/60000]
loss: 1.787248 [19200/60000]
loss: 1.663797 [25600/60000]
loss: 1.628784 [32000/60000]
loss: 1.656449 [38400/60000]
loss: 1.553097 [44800/60000]
loss: 1.582812 [51200/60000]
loss: 1.476982 [57600/60000]
Test Error:
Accuracy: 60.3%, Avg loss: 1.495178
Epoch 4
-------------------------------
loss: 1.570129 [ 0/60000]
loss: 1.536125 [ 6400/60000]
loss: 1.379916 [12800/60000]
loss: 1.455038 [19200/60000]
loss: 1.332352 [25600/60000]
loss: 1.337494 [32000/60000]
loss: 1.350402 [38400/60000]
loss: 1.275247 [44800/60000]
loss: 1.310407 [51200/60000]
loss: 1.212858 [57600/60000]
Test Error:
Accuracy: 63.3%, Avg loss: 1.241025
Epoch 5
-------------------------------
loss: 1.320390 [ 0/60000]
loss: 1.305637 [ 6400/60000]
loss: 1.133990 [12800/60000]
loss: 1.242127 [19200/60000]
loss: 1.116368 [25600/60000]
loss: 1.145456 [32000/60000]
loss: 1.163464 [38400/60000]
loss: 1.101201 [44800/60000]
loss: 1.141440 [51200/60000]
loss: 1.058561 [57600/60000]
Test Error:
Accuracy: 64.7%, Avg loss: 1.082234
Done!
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
Read more about Training your model (opens new window).
# Saving Models
A common way to save a model is to serialize the internal state dictionary (containing the model parameters).
torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
2
Out:
Saved PyTorch Model State to model.pth
# Loading Models
The process for loading a model includes re-creating the model structure and loading the state dictionary into it.
model = NeuralNetwork()
model.load_state_dict(torch.load("model.pth"))
2
This model can now be used to make predictions.
classes = [
"T-shirt/top",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankle boot",
]
model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
pred = model(x)
predicted, actual = classes[pred[0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Out:
Predicted: "Ankle boot", Actual: "Ankle boot"
Read more about Saving & Loading your model (opens new window).
- 01
- Linux系统移植(五)--- 制作、烧录镜像并启动Linux02-05
- 03
- Linux系统移植(三)--- Linux kernel移植02-05