pytorch-TENSORS
# TENSORS
Tensors are a specialized data structure that are very similar to arrays and matrices. In PyTorch, we use tensors to encode the inputs and outputs of a model, as well as the model’s parameters.
Tensors are similar to NumPy’s (opens new window) ndarrays, except that tensors can run on GPUs or other hardware accelerators. In fact, tensors and NumPy arrays can often share the same underlying memory, eliminating the need to copy data (see Bridge with NumPy (opens new window)). Tensors are also optimized for automatic differentiation (we’ll see more about that later in the Autograd (opens new window) section). If you’re familiar with ndarrays, you’ll be right at home with the Tensor API. If not, follow along!
import torch
import numpy as np
2
# Initializing a Tensor
Tensors can be initialized in various ways. Take a look at the following examples:
Directly from data
Tensors can be created directly from data. The data type is automatically inferred.
data = [[1, 2],[3, 4]]
x_data = torch.tensor(data)
2
From a NumPy array
Tensors can be created from NumPy arrays (and vice versa - see Bridge with NumPy (opens new window)).
np_array = np.array(data)
x_np = torch.from_numpy(np_array)
2
From another tensor:
The new tensor retains the properties (shape, datatype) of the argument tensor, unless explicitly overridden.
x_ones = torch.ones_like(x_data) # retains the properties of x_data
print(f"Ones Tensor: \n {x_ones} \n")
x_rand = torch.rand_like(x_data, dtype=torch.float) # overrides the datatype of x_data
print(f"Random Tensor: \n {x_rand} \n")
2
3
4
5
Out:
Ones Tensor:
tensor([[1, 1],
[1, 1]])
Random Tensor:
tensor([[0.2182, 0.0160],
[0.9304, 0.8337]])
2
3
4
5
6
7
With random or constant values:
shape
is a tuple of tensor dimensions. In the functions below, it determines the dimensionality of the output tensor.
shape = (2,3,)
rand_tensor = torch.rand(shape)
ones_tensor = torch.ones(shape)
zeros_tensor = torch.zeros(shape)
print(f"Random Tensor: \n {rand_tensor} \n")
print(f"Ones Tensor: \n {ones_tensor} \n")
print(f"Zeros Tensor: \n {zeros_tensor}")
2
3
4
5
6
7
8
Out:
Random Tensor:
tensor([[0.5131, 0.7655, 0.8644],
[0.8278, 0.2081, 0.9505]])
Ones Tensor:
tensor([[1., 1., 1.],
[1., 1., 1.]])
Zeros Tensor:
tensor([[0., 0., 0.],
[0., 0., 0.]])
2
3
4
5
6
7
8
9
10
11
# Attributes of a Tensor
Tensor attributes describe their shape, datatype, and the device on which they are stored.
tensor = torch.rand(3,4)
print(f"Shape of tensor: {tensor.shape}")
print(f"Datatype of tensor: {tensor.dtype}")
print(f"Device tensor is stored on: {tensor.device}")
2
3
4
5
Out:
Shape of tensor: torch.Size([3, 4])
Datatype of tensor: torch.float32
Device tensor is stored on: cpu
2
3
# Operations on Tensors
Over 100 tensor operations, including arithmetic, linear algebra, matrix manipulation (transposing, indexing, slicing), sampling and more are comprehensively described here (opens new window).
Each of these operations can be run on the GPU (at typically higher speeds than on a CPU). If you’re using Colab, allocate a GPU by going to Runtime > Change runtime type > GPU.
By default, tensors are created on the CPU. We need to explicitly move tensors to the GPU using .to
method (after checking for GPU availability). Keep in mind that copying large tensors across devices can be expensive in terms of time and memory!
# We move our tensor to the GPU if available
if torch.cuda.is_available():
tensor = tensor.to("cuda")
2
3
Try out some of the operations from the list. If you’re familiar with the NumPy API, you’ll find the Tensor API a breeze to use.
Standard numpy-like indexing and slicing:
tensor = torch.ones(4, 4)
print(f"First row: {tensor[0]}")
print(f"First column: {tensor[:, 0]}")
print(f"Last column: {tensor[..., -1]}")
tensor[:,1] = 0
print(tensor)
2
3
4
5
6
Out:
First row: tensor([1., 1., 1., 1.])
First column: tensor([1., 1., 1., 1.])
Last column: tensor([1., 1., 1., 1.])
tensor([[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.]])
2
3
4
5
6
7
Joining tensors You can use torch.cat
to concatenate a sequence of tensors along a given dimension. See also torch.stack (opens new window), another tensor joining op that is subtly different from torch.cat
.
t1 = torch.cat([tensor, tensor, tensor], dim=1)
print(t1)
2
Out:
tensor([[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.]])
2
3
4
Arithmetic operations
# This computes the matrix multiplication between two tensors. y1, y2, y3 will have the same value
y1 = tensor @ tensor.T
y2 = tensor.matmul(tensor.T)
y3 = torch.rand_like(tensor)
torch.matmul(tensor, tensor.T, out=y3)
# This computes the element-wise product. z1, z2, z3 will have the same value
z1 = tensor * tensor
z2 = tensor.mul(tensor)
z3 = torch.rand_like(tensor)
torch.mul(tensor, tensor, out=z3)
2
3
4
5
6
7
8
9
10
11
12
13
14
Single-element tensors If you have a one-element tensor, for example by aggregating all values of a tensor into one value, you can convert it to a Python numerical value using item()
:
agg = tensor.sum()
agg_item = agg.item()
print(agg_item, type(agg_item))
2
3
Out:
12.0 <class 'float'>
In-place operations Operations that store the result into the operand are called in-place. They are denoted by a _
suffix. For example: x.copy_(y)
, x.t_()
, will change x
.
print(f"{tensor} \n")
tensor.add_(5)
print(tensor)
2
3
Out:
tensor([[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.]])
tensor([[6., 5., 6., 6.],
[6., 5., 6., 6.],
[6., 5., 6., 6.],
[6., 5., 6., 6.]])
2
3
4
5
6
7
8
9
NOTE
In-place operations save some memory, but can be problematic when computing derivatives because of an immediate loss of history. Hence, their use is discouraged.
# Bridge with NumPy
Tensors on the CPU and NumPy arrays can share their underlying memory locations, and changing one will change the other.
# Tensor to NumPy array
t = torch.ones(5)
print(f"t: {t}")
n = t.numpy()
print(f"n: {n}")
2
3
4
Out:
t: tensor([1., 1., 1., 1., 1.])
n: [1. 1. 1. 1. 1.]
2
A change in the tensor reflects in the NumPy array.
t.add_(1)
print(f"t: {t}")
print(f"n: {n}")
2
3
Out:
t: tensor([2., 2., 2., 2., 2.])
n: [2. 2. 2. 2. 2.]
2
# NumPy array to Tensor
n = np.ones(5)
t = torch.from_numpy(n)
2
Changes in the NumPy array reflects in the tensor.
np.add(n, 1, out=n)
print(f"t: {t}")
print(f"n: {n}")
2
3
Out:
t: tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
n: [2. 2. 2. 2. 2.]
2
- 01
- Linux系统移植(五)--- 制作、烧录镜像并启动Linux02-05
- 03
- Linux系统移植(三)--- Linux kernel移植02-05